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The desirable properties of a balance for accurate weighing

will be found set forth in most physical text-books; and for

the purposes of this paper reference may be made to

Thomson and Tait's Natural Philosophy, Articles 430, 431,

and 572 ; and Deschanel's Natural Philosophy (Everett's

translation), chapter vii. From these sources the following

quotations are taken :

—

"The balance-beam should be as stiff as possible, and yet

not very heavy."

—

Thomson and Tait, Article 430.
" Thus the stability is greater for a given load —(1) the less

the length of the beam; (2) the less its mass; (3) the less

its radius of gyration; (4) the further the fulcrum from the

beam, and from its centre of gravity. With the exception

of the second, these adjustments are the very opposite of

those required for sensibility. Hence all we can do is to

effect a judicious compromise ; but the less the mass of the

beam, the better will the balance be in both respects."—Thomson and Tait, Article 572.

"The problem of the balance, then, consists in constructing

a beam of the greatest possible length and lightness, which
should be capable of supporting the action of given forces

without bending."

—

Deschanel, page 82.

The question, then, is to devise a form of beam which,

with sufficient strength and rigidity, shall combine a
mininum mass—a problem similar to that with which the

engineer has to deal, on a larger scale, in designing bridges,

roofs, and other framed structures —the principal difference

being that while the majority of our roof and bridge frames
are supported at the ends, and loaded at intermediate points,

the balance-beam is supported at the centre, and loaded at

the ends.

A fundamental fact that lies at the basis of all economical
design is that the longitudinal strength of comparatively
long and narrow pieces of ordinary materials is very large

indeed, compared to the transverse strength. A wooden
lath or rod that would endure a longitudinal compression of

hundredweights will break with a transverse force of a few
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pounds; and a metal wire —a telegraph wire, for instance —that

will safely bear a pull of, say, half a ton, may, when supported

on points a yard apart, be bent by a force that can be easily

exerted by the hand. The first point to be regarded, then,

is so to arrange matters that the parts of the structure, be it

bridge or balance-beam, shall be strained longitudinally, and
not transversely. To fulfil this condition it is necessary

that, if all in the same plane, they shall form a series of

triangles, the triangle being the only polygon the form of

which is absolutely fixed when the lengths of the sides are

given. The simplest and lightest arrangement possible is that

of two triangles, as shown in Fig. 1, where A is the fulcrum,

and B and C the points from which the loads are suspended.

Under the action of the loads the parts B D, D C, and A E
endure tensions, and B E, E C, D Acompressions, the magni-
tudes of which are calculable by the methods of statics on the

assumption that the points BDCEare hinges. Should these

points not be hinged, the actual stresses will be complicated

by certain elastic actions, but to an extent that is quite

unimportant when the lengths of the parts are large, com-
pared with their transverse dimensions in plane of the beam,
as is the usual case in framed structures.

Beams of a design somewhat similar to Fig. 1 in form are

frequently met with. They are, however, usually open to

objection on the following grounds :

—

1. The bars, instead of meeting strictly at points at B and

C, often terminate at different levels, as in Fig. 2, thereby

losing to a large extent the benefits of the triangular system,

and introducing transverse bending moment, and compli-

cated elastic actions inimical to rigidity.

2. Anumber of vertical connections are introduced, adding

to the mass, but not enduring any definite calculable stress.

3. Instead of one vertical diagonal D E, two bars are

used, F G and H I, the portions F H and G I being bent

as shown. This is a departure from all sound principles of

design. If the bars F G and H I be used, as is, perhaps,

desirable in order to accommodate the usual arrangement
of fulcrum, then G I should be made perfectly straight and
F H specially strengthened to endure the bending moment
due to the upward reaction of the fulcrum. This last

defect is very manifest in Figs. 42 and 43, pp. 85, 86, of

De&chanel, representing a " balance of great delicacy."

The next question is to determine the magnitude of the

angles B D E, B E D, &c, for which the mass of a beam of
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given strength is a minimum, and this can be accomplished
by the use of the methods of the differential calculus as

follows :

—

Let us suppose the material of the beam to possess equal

strength in compression and tension, then the beam will be
symmetrical about the line BC, the lower half being the

exact counterpart of the upper; let the length BC = 21,

DE = 2x, then under a given load Wacting at B, the

tension on BD will be

vv DE ~ vv
2x

The amount of material in each part of the frame will be
proportional to the product of the stress into the length,

therefore, the amount of material in BD will be

By symmetry the stresses on the four bars BD, DC, CE, EB
will be equal, and the material required for them will be

I
2 + x 2

4cW
2x

The compression on DAand the tension on AE will each

equal W, and the amount of material in them will

be 2c Wx
The total material in the frame is

m(l
2 + a? x

And we wish to find the value of x, for which the quantity

in the bracket is a minimum.
Let

I
2

V = 2x~
+X

dx ~ 2x 2 ^ L W
Wheny is a minimum or maximum -^- =9 dx
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Therefore

—

Z
2

2a;
2 ~ "

2a:
2 = I

2

x = ± I -==
.

J2
Consequently the economic form is a rhombus, as in Fig. 3.

Cast steel can be obtained having a resistance both to

crushing and tearing of at least 100,000 lbs. per square inch.

Let such steel be used, and let the length B C be 20 inches

;

the sectional area of B D, D C, C E, and E B, T\ of a square

inch ; and of A D, and A E, -^ square inch ; then the volume
of the beam will be *85 of a cubic inch, and its weight about
one-fifth of a pound avoirdupois. The weight that would have
to be placed at B and C in order to cause fracture would be,

in round numbers, 1400 lbs., and a load of one-fourth of this

amount, or 350 lbs., should be perfectly safe if carefully

imposed. Thus we should have a beam 20 inches long, and
weighing less than one-fourth of a pound, supporting safely

at each end 1400 times its own weight. If made of iron, the

strength of which would be from one-third to half that of

the steel, it would support safely about 150 lbs. at each end
;

and if of brass, about 80 lbs.

Of course, the parts in compression would need to be of

tubular or girder section to give lateral stiffness.

Two practical objections suggest themselves at this stage

—

1. That the vertical bar D E would interfere with the

necessary arrangements for the fulcrum. This difficulty

may be met with by the modification shown in Fig. 4, with
but inconsiderable increase of weight.

2. That this form of beam would not permit the use of

the ordinary " rider." This objection may be met by
stretching a fine wire from A to B and from C to D, and
placing the rider on this.

In conclusion, the form of beam proposed secures the

minimum mass for a given safe load, and also, by virtue of

its great depth, will be exceedingly rigid. Its construction

should present no special difficulty, and I see no reason why
it should not be generally adopted.


